Runtime Verification-Based Safe MARL for Optimized Safety Policy Generation for Multi-Robot Systems

Author:

Liu Yang1,Li Jiankun1

Affiliation:

1. Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 200120, China

Abstract

The intelligent warehouse is a modern logistics management system that uses technologies like the Internet of Things, robots, and artificial intelligence to realize automated management and optimize warehousing operations. The multi-robot system (MRS) is an important carrier for implementing an intelligent warehouse, which completes various tasks in the warehouse through cooperation and coordination between robots. As an extension of reinforcement learning and a kind of swarm intelligence, MARL (multi-agent reinforcement learning) can effectively create the multi-robot systems in intelligent warehouses. However, MARL-based multi-robot systems in intelligent warehouses face serious safety issues, such as collisions, conflicts, and congestion. To deal with these issues, this paper proposes a safe MARL method based on runtime verification, i.e., an optimized safety policy-generation framework, for multi-robot systems in intelligent warehouses. The framework consists of three stages. In the first stage, a runtime model SCMG (safety-constrained Markov Game) is defined for the multi-robot system at runtime in the intelligent warehouse. In the second stage, rPATL (probabilistic alternating-time temporal logic with rewards) is used to express safety properties, and SCMG is cyclically verified and refined through runtime verification (RV) to ensure safety. This stage guarantees the safety of robots’ behaviors before training. In the third stage, the verified SCMG guides SCPO (safety-constrained policy optimization) to obtain an optimized safety policy for robots. Finally, a multi-robot warehouse (RWARE) scenario is used for experimental evaluation. The results show that the policy obtained by our framework is safer than existing frameworks and includes a certain degree of optimization.

Funder

OE Humanities and Social Sciences Foundation of China

Singapore–UK Cyber Security of EPSRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3