3D NoC Low-Power Mapping Optimization Based on Improved Genetic Algorithm

Author:

Gan Yu,Guo HongORCID,Zhou Ziheng

Abstract

Power optimization is an important part of network-on-chip(NoC) design. This paper proposes an improved algorithm based on genetic algorithm on how to properly map IP (Intellectual Property) cores to 3D NoC. First, in view of the randomness of the traditional genetic algorithm in individual selection, an improved greedy algorithm is used in the initial population generation stage to make the generated individuals reach the optimal. Secondly, in view of the weak local optimization ability of the traditional genetic algorithm and prone to premature problems, the simulated annealing algorithm is added in the crossover operation stage to make the offspring reach the global optimum. The experimental results show that compared with the traditional genetic algorithm, the algorithm has better convergence and low power consumption performance, which can quickly search for a better solution, in the case of a large number of cores (124 IP cores), the average power consumption can be reduced by 42.2%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3