Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm

Author:

Trzepieciński TomaszORCID,Lemu Hirpa G.ORCID

Abstract

This paper presents the results of predictions of springback of cold-rolled anisotropic steel sheets using an approach based on a multilayer perceptron-based artificial neural network (ANN) coupled with a genetic algorithm (GA). A GA was used to optimise the number of input parameters of the multilayer perceptron that was trained using different algorithms. In the investigations, the mechanical parameters of sheet material determined in uniaxial tensile tests were used as input parameters to train the ANN. The springback coefficient, determined experimentally in the V-die air bending test, was used as an output variable. It was found that specimens cut along the rolling direction exhibit higher values of springback coefficient than specimens cut transverse to the rolling direction. An increase in the bending angle leads to an increase in the springback coefficient. A GA-based analysis has shown that Young’s modulus and ultimate tensile stress are variables having no significant effect on the coefficient of springback. Multilayer perceptrons trained by back propagation, conjugate gradients and Lavenberg–Marquardt algorithms definitely favour punch bend depth under load as the most important variables affecting the springback coefficient.

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Investigation on the influence of damage to springback of U-shape HSLA steel plates

2. Springback prediction and elasticity modulus variation

3. Springback prediction of sheet metals using improved material models

4. A method for investigating the springback behavior of 3D tubes;Jianjun;Int. J. Mech. Sci.,2017

5. Novel incremental sheet forming system with tool-path calculation approach;Paniti;Acta Polytech. Hung.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3