Analysis of the Frictional Performance of AW-5251 Aluminium Alloy Sheets Using the Random Forest Machine Learning Algorithm and Multilayer Perceptron

Author:

Trzepieciński Tomasz1ORCID,Najm Sherwan Mohammed23ORCID,Ibrahim Omar Maghawry4,Kowalik Marek5ORCID

Affiliation:

1. Department of Manufacturing Processes and Production Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland

2. Kirkuk Technical Institute, Northern Technical University, 36001 Kirkuk, Iraq

3. Department of Manufacturing Science and Engineering, Budapest University of Technology and Economics, Műegyetemrkp 3, H-1111 Budapest, Hungary

4. Plant Production Department, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications SRTA-City, Borg Al-Arab 21934, Egypt

5. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, 54 Stasieckiego Street, 26-600 Radom, Poland

Abstract

This paper is devoted to the determination of the coefficient of friction (COF) in the drawbead region in metal forming processes. As the test material, AW-5251 aluminium alloys sheets fabricated under various hardening conditions (AW-5251-O, AW-5251-H14, AW-5251-H16 and AW-5251H22) were used. The sheets were tested using a drawbead simulator with different countersample roughness and different orientations of the specimens in relation to the sheet rolling direction. A drawbead simulator was designed to model the friction conditions when the sheet metal passed through the drawbead in sheet metal forming. The experimental tests were carried out under conditions of dry friction and lubrication of the sheet metal surfaces with three lubricants: machine oil, hydraulic oil, and engine oil. Based on the results of the experimental tests, the value of the COF was determined. The Random Forest (RF) machine learning algorithm and artificial neural networks (ANNs) were used to identify the parameters affecting the COF. The R statistical package software version 4.1.0 was used for running the RF model and neural network. The relative importance of the inputs was analysed using 12 different activation functions in ANNs and nine different loss functions in the RF. Based on the experimental tests, it was concluded that the COF for samples cut along the sheet rolling direction was greater than for samples cut in the transverse direction. However, the COF’s most relevant input was oil viscosity (0.59), followed by the average counter sample roughness Ra (0.30) and the yield stress Rp0.2 and strength coefficient K (0.05 and 0.06, respectively). The hard sigmoid activation function had the poorest R2 (0.25) and nRMSE (0.30). The ideal run was found after training and testing the RF model (R2 = 0.90 ± 0.028). Ra values greater than 1.1 and Rp0.2 values between 105 and 190 resulted in a decreased COF. The COF values dropped to 9–35 for viscosity and 105–190 for Rp0.2, with a gap between 110 and 130 when the oil viscosity was added. The COF was low when the oil viscosity was 9–35, and the Ra was 0.95–1.25. The interaction between K and the other inputs, which produces a relatively limited range of reduced COF values, was the least relevant. The COF was reduced by setting the Rp0.2 between 105 and 190, the Ra between 0.95 and 1.25, and the oil viscosity between 9 and 35.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3