Experimental and Numerical Investigation of Folding Process—Prediction of Folding Force and Springback

Author:

Ben Said Lotfi12ORCID,Hentati Hamdi34,Kamoun Taoufik5,Trabelsi Mounir5

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il City 2440, Saudi Arabia

2. Laboratory of Electrochemistry and Environment (LEE), National Engineering School of Sfax, University of Sfax, Sfax 5080, Tunisia

3. Laboratory of Mechanics Modeling and Production, National Engineering School of Sfax, University of Sfax, Sfax 5080, Tunisia

4. Higher School of Sciences and Technology of Hammam Sousse, University of Sousse, Sousse 4002, Tunisia

5. Higher Institute of Technological Studies of Sfax, Sfax 3099, Tunisia

Abstract

The folding process is characterized by the springback phenomenon. Several experimental folding tests are elaborated and illustrated in this paper. The precision and the quality of the folded sheet workpiece are related to the reduction in the springback phenomena. For that, two tools are designed and used for the folding process. An accurate design of the folding tool plays a significant role in contributing to the folding process and reducing potential defects related to springback. An experimental solution is presented to avoid the forming of defaults and compensate the workpiece springback after its removal from the die. Moreover, an accurate numerical modeling enables an efficient prediction of the springback. This allows us to obtain precise parts through the folding process. For that, a modified Johnson–Cook model is implemented on ABAQUS software in order to predict the folding force and the springback in a U-die folding process. In addition to the isotropic hardening law, a nonlinear kinematic hardening rule is used. To ensure the model’s accuracy and reliability, we conducted validation experiments. The model’s predictions are compared with experimental tests to show its capability to simulate the folding process effectively. The developed mechanical model can adequately predict and analyze springback effects and folding force evolution, helping designers compensate for them and achieve the desired final shape.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3