Prediction of Oleic Acid Content of Rapeseed Using Hyperspectral Technique

Author:

Liu Fan,Wang Fang,Liao Guiping,Lu Xin,Yang Jiayi

Abstract

In order to detect the oleic acid content of rapeseed quickly and accurately, we propose, in this paper, an artificial BP neural networks based model for predicting oleic acid content by using rapeseed’s hyperspectral information. Four types of spectral features are selected for our investigation, namely multifractal index, sensitive band, trilateral parameters, and spectral index. Both univariate variable and multiple variables are considered as our model input. The result shows that the combined feature has higher precision and better stability than when using a single parameter. An interesting finding shows that the combined feature involving multifractal parameters can significantly improve the model performance. Taking the combined feature {MF-h(0), SB-DR574, SPI-NDSI(R575, R576)} as the model input, the constructed BP (back propagation) neural networks model has the highest precision, with the coefficient of determination (R2) 0.8753, root mean square error (RMSE) 1.0301, and relative error (RE) 1.047%. This result provides some experience for the rapid detection of rapeseed’s oleic acid content.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Effects of Different Cultivation Methods on Quality of High Oleic Acid Rape;Wang;Crop Res.,2019

2. Establishment of near infrared analytic model for major fatty acids content of Brassica napus L;Li;Guangdong Agric. Sci.,2014

3. Correlation between camellia seed aliphatic acid composition and hyperspectral reflectance

4. Rapid and Non-destructive Determination of Oil Content of Peanut (Arachis hypogaea L.) Using Hyperspectral Imaging Analysis

5. Determination of In-Shell Peanut Oil and Fatty Acid Composition Using Near-Infrared Reflectance Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3