Enhanced Thermal Stability of Sputtered TiN Thin Films for Their Applications as Diffusion Barriers against Copper Interconnect

Author:

Aljaafari Abdullah1ORCID,Ahmed Faheem1ORCID,Shaalan Nagih M.12ORCID,Kumar Shalendra13ORCID,Alsulami Abdullah4ORCID

Affiliation:

1. Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

2. Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

3. Department of Physics, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, India

4. Physics Department, College of Sciences and Art at ArRass, Qassim University, ArRass 51921, Saudi Arabia

Abstract

In this work, the deposition of titanium nitride (TiN) thin film using direct current (DC) sputtering technique and its application as diffusion barriers against copper interconnect was presented. The deposited film was analyzed by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) techniques. XRD patterns showed the face-centered cubic (FCC) structure for the TiN/SiO2/Si film, having (111) and (200) peaks and TiN (111), Cu(111), and Cu(200) peaks for Cu/TiN/SiO2/Si film. FESEM images revealed that the grains were homogeneously dispersed on the surface of the TiN film, having a finite size. XPS study showed that Ti2p doublet with peaks centered at 455.1 eV and 461.0 eV for TiN film was observed. Furthermore, the stoichiometry of the deposited TiN film was found to be 0.98. The sheet resistance of the TiN film was analyzed by using a four-point probe method, and the resistivity was calculated to be 11 μΩ cm. For the utilization, TiN film were tested for diffusion barrier performance against Cu interconnect. The results exhibited that TiN film has excellent performance in diffusion barrier for copper metallization up to a temperature of 700 °C. However, at a higher annealing temperature of 800 °C, the formation of Cu3Si and TiSi2 compounds were evident. Thus, stoichiometric TiN film with high thermal stability and low resistivity produced in this study could be applied for the fabrication of microelectronic devices.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3