Smart Approaches to Food Waste Final Disposal

Author:

Cecchi Franco,Cavinato Cristina

Abstract

Food waste, among the organic wastes, is one of the most promising substrates to be used as a renewable resource. Wide availability of food waste and the high greenhouse gas impacts derived from its inappropriate disposal, boost research through food waste valorization. Several innovative technologies are applied nowadays, mainly focused on bioenergy and bioresource recovery, within a circular economy approach. Nevertheless, food waste treatment should be evaluated in terms of sustainability and considering the availability of an optimized separate collection and a suitable treatment facility. Anaerobic codigestion of waste-activated sludge with food waste is a way to fully utilize available anaerobic digestion plants, increasing biogas production, energy, and nutrient recovery and reducing greenhouse gas (GHG) emissions. Codigestion implementation in Europe is explored and discussed in this paper, taking into account different food waste collection approaches in relation to anaerobic digestion treatment and confirming the sustainability of the anaerobic process based on case studies. Household food waste disposal implementation is also analyzed, and the results show that such a waste management system is able to reduce GHG emissions due to transport reduction and increase wastewater treatment performance.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3