The Atomic Layer Etching Technique with Surface Treatment Function for InAlN/GaN Heterostructure

Author:

Du FangzhouORCID,Jiang Yang,Wu Zhanxia,Lu Honghao,He Jiaqi,Tang Chuying,Hu Qiaoyu,Wen Kangyao,Tang Xinyi,Hong Haimin,Yu Hongyu,Wang Qing

Abstract

This paper studied an atomic layer etching (ALE) technique with a surface treatment function for InAlN/GaN heterostructures with AlN spacer layers. Various parameters were attempted, and 30 s O2 + 15 W BCl3 was chosen as the optimal recipe. The optimal ALE approach exhibited satisfactory etching results, with regard to the etch-stop effect, compared with other techniques. The atomic force microscopy (AFM) results showed an etching per cycle (EPC) value of 0.15 nm/cycle, with a 0.996 fit coefficient and root mean square (RMS) surface roughness of around 0.61 nm (0.71 nm for as-grown sample), which was the lowest in comparison with digital etching (0.69 nm), Cl2/BCl3 continuous etching (0.91 nm) and BCl3 continuous etching (0.89 nm). X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy with energy dispersive X-ray spectroscopy measurements (STEM/EDS) verified the indium clustered phenomena at the bottom apex of V-pit defects in the epi structure of InAlN/GaN high electron mobility transistors (HEMTs) for the first time, in addition to the surface morphology optimization for the ALE under-etching technique used in this work. The resistor hall effect (Hall) and AFM measurements demonstrated that after 4 or 5 ALE cycles, the two-dimensional electron gas (2-DEG) density and RMS roughness were improved by 15% and 11.4%, respectively, while the sheet resistance (Rsh) was reduced by 6.7%, suggesting a good surface treatment function. These findings were important for realizing high-performance InAlN/GaN HEMTs.

Funder

Research on R&D and industrialization of new energy vehicle drive and its special chip for charging pile

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3