Improving Performance and Breakdown Voltage in Normally-Off GaN Recessed Gate MIS-HEMTs Using Atomic Layer Etching and Gate Field Plate for High-Power Device Applications

Author:

Liu An-Chen1,Tu Po-Tsung12,Chen Hsin-Chu3ORCID,Lai Yung-Yu4ORCID,Yeh Po-Chun2,Kuo Hao-Chung15ORCID

Affiliation:

1. Department of Photonics, Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

2. Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Zhudong 310401, Taiwan

3. Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-sen University, Kaohsiung 804201, Taiwan

4. Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan

5. Semiconductor Research Center, Hon Hai Research Institute, Taipei 114699, Taiwan

Abstract

A typical method for normally-off operation, the metal–insulator–semiconductor-high electron mobility transistor (MIS-HEMT) has been investigated. Among various approaches, gate recessed MIS-HEMT have demonstrated a high gate voltage sweep and low leakage current characteristics. Despite their high performance, obtaining low-damage techniques in gate recess processing has so far proven too challenging. In this letter, we demonstrate a high current density and high breakdown down voltage of a MIS-HEMT with a recessed gate by the low damage gate recessed etching of atomic layer etching (ALE) technology. After the remaining 3.7 nm of the AlGaN recessed gate was formed, the surface roughness (Ra of 0.40 nm) was almost the same as the surface without ALE (no etching) as measured by atomic force microscopy (AFM). Furthermore, the devices demonstrate state-of-the-art characteristics with a competitive maximum drain current of 608 mA/mm at a VG of 6 V and a threshold voltage of +2.0 V. The devices also show an on/off current ratio of 109 and an off-state hard breakdown voltage of 1190 V. The low damage of ALE technology was introduced into the MIS-HEMT with the recessed gate, which effectively reduced trapping states at the interface to obtain the low on-resistance (Ron) of 6.8 Ω·mm and high breakdown voltage performance.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3