Abstract
This research aims to develop a classification model based on untargeted elaboration of volatile fraction fingerprints of virgin olive oils (n = 331) analyzed by flash gas chromatography to predict the commercial category of samples (extra virgin olive oil, EVOO; virgin olive oil, VOO; lampante olive oil, LOO). The raw data related to volatile profiles were considered as independent variables, while the quality grades provided by sensory assessment were defined as a reference parameter. This data matrix was elaborated using the linear technique partial least squares-discriminant analysis (PLS-DA), applying, in sequence, two sequential classification models with two categories (EVOO vs. no-EVOO followed by VOO vs. LOO and LOO vs. no-LOO followed by VOO vs. EVOO). The results from this large set of samples provide satisfactory percentages of correctly classified samples, ranging from 72% to 85%, in external validation. This confirms the reliability of this approach in rapid screening of quality grades and that it represents a valid solution for supporting sensory panels, increasing the efficiency of the controls, and also applicable to the industrial sector.
Subject
Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献