Effect of Stiffening the Printed Circuit Board in the Fatigue Life of the Solder Joint

Author:

Doranga Sushil,Schuldt Matthew,Khanal MukundaORCID

Abstract

Predictive analysis of the life of an electronic package requires a sequence of processes involving: (i) development of a finite element (FE) model, (ii) correlation of the FE model using experimental data, and (iii) development of a local model using the correlated FE model. The life of the critical components is obtained from the local model and is usually compared to the experimental results. Although the specifics of such analyses are available in the literature, a comparison among them and against the same electronic package with different user printed circuit board (PCB) thicknesses does not exist. This study addresses the issues raised during the design phase/life analysis, by considering a particular package with a variable geometric thickness of the user PCB. In this paper, the effect of stiffening the user PCB on the fatigue life of a ball grid array (BGA), SAC305 solder joint is studied. The board stiffness was varied by changing the thickness of the PCB, while the size of the substrate, chips, and solder balls were kept constant. The test vehicle consisted of BGA chips soldered to a user PCB. The thickness of the user PCB was varied, but the surface area of the BGA chip remained identical. The test vehicle was then modeled using a finite element analysis tool (ANSYS). Using a global/local modeling approach, the modal parameters in the simulations were correlated with experimental data. The first resonance frequency dwell test was carried out in ANSYS, and the high-cycle fatigue life was estimated using the stress-life approach. Following the simulation, the test vehicle was subjected to resonance fatigue testing by exciting at the first mode resonance frequency, the mode with the most severe solder joint failure. The resistance of the solder joint during the experiment was monitored using a daisy-chain circuit, and the point of failure was further confirmed using the destructive evaluation technique. Both the experimental and simulation results showed that stiffening the board will significantly increase the fatigue life of the solder joint. Although the amplitude of the acceleration response of the test vehicle will be higher due to board stiffening, the increase in natural frequencies will significantly reduce the amplitude of relative displacement between the PCB and the substrate.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3