A Kriging Surrogate Model for Ball Grid Array Electronic Packaging With Stochastic Material and Geometrical Parameters

Author:

Chu Liu12,Shi Jiajia3ORCID,de Cursi Eduardo Souza4

Affiliation:

1. Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China

2. ShanghaiTech University

3. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

4. Département Mécanique, Institut national des sciences appliquées de Rouen, Rouen 76801, France

Abstract

Abstract Ball grid arrays (BGAs) offer significant advantages in the automotive industry, such as their small size and high integration density, making them a promising electronic packaging approach. However, the operating environment of automobiles is more complex compared to other applications, primarily due to vibrations generated by power engines and oscillations caused by pavement roughness. The resonant frequencies of electronic packaging structures play a crucial role in system reliability and safety. However, accurately describing the implicit relationship between system resonant frequencies and material and geometrical parameters can be challenging. A Kriging surrogate model (KSM) is proposed by the combination of the Latin Hypercube stochastic sampling with finite element computation. Four different BGA configurations are established with either the initial values in the deterministic model or the specified sampling interval ranges in the stochastic model. The results of the finite element model (FEM) for BGA electronic packaging are validated and demonstrate qualitative agreement with published literature. The impacts of material and geometrical parameters on the resonant frequencies are investigated and compared. The mean, maximum, minimum, and variance are recorded based on a large database of stochastic samples. The feasibility of KSM for the resonant frequency prediction of BGA is confirmed by its satisfactory accuracy and computational efficiency.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3