Genome-Wide Identification and Evolution Analysis of R2R3-MYB Gene Family Reveals S6 Subfamily R2R3-MYB Transcription Factors Involved in Anthocyanin Biosynthesis in Carrot

Author:

Duan Ao-Qi,Tan Shan-Shan,Deng Yuan-Jie,Xu Zhi-Sheng,Xiong Ai-ShengORCID

Abstract

The taproot of purple carrot accumulated rich anthocyanin, but non-purple carrot did not. MYB transcription factors (TFs) condition anthocyanin biosynthesis in many plants. Currently, genome-wide identification and evolution analysis of R2R3-MYB gene family and their roles involved in conditioning anthocyanin biosynthesis in carrot is still limited. In this study, a total of 146 carrot R2R3-MYB TFs were identified based on the carrot transcriptome and genome database and were classified into 19 subfamilies on the basis of R2R3-MYB domain. These R2R3-MYB genes were unevenly distributed among nine chromosomes, and Ka/Ks analysis suggested that they evolved under a purified selection. The anthocyanin-related S6 subfamily, which contains 7 MYB TFs, was isolated from R2R3-MYB TFs. The anthocyanin content of rhizodermis, cortex, and secondary phloem in ‘Black nebula’ cultivar reached the highest among the 3 solid purple carrot cultivars at 110 days after sowing, which was approximately 4.20- and 3.72-fold higher than that in the ‘Deep purple’ and ‘Ziwei’ cultivars, respectively. The expression level of 7 MYB genes in purple carrot was higher than that in non-purple carrot. Among them, DcMYB113 (DCAR_008994) was specifically expressed in rhizodermis, cortex, and secondary phloem tissues of ‘Purple haze’ cultivar, with the highest expression level of 10,223.77 compared with the control ‘DPP’ cultivar at 70 days after sowing. DcMYB7 (DCAR_010745) was detected in purple root tissue of ‘DPP’ cultivar and its expression level in rhizodermis, cortex, and secondary phloem was 3.23-fold higher than that of secondary xylem at 110 days after sowing. Our results should be useful for determining the precise role of S6 subfamily R2R3-MYB TFs participating in anthocyanin biosynthesis in carrot.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3