Comparison of Branch Water Relations in Two Riparian Species: Populus euphratica and Tamarix ramosissima

Author:

Li Duan,Si Jianhua,Zhang Xiaoyou,Gao Yayu,Luo Huan,Qin Jie,Gao Guanlong

Abstract

Water relations in plants maintain healthy tree branches and drought conditions during plant growth may affect water relations, but the mechanisms are poorly known. In our study, we determined the stomatal conductance, hydraulic conductance, water potential and ion concentration of xylem sap to increase the understanding of changes in water relations in branches of Populus euphratica (P. euphratica) and Tamarix ramosissima (T. ramosissima), which are the dominant plant species in the lower reaches of the Heihe River Basin in China. The results showed that both species responded to vapor pressure deficit (VPD) during the growing season by adjusting stomatal conductance to achieve homeostasis in leaf water potentials. The leaf-specific hydraulic conductance (LSC) of the branch was determined using water status in the branch, and the LSC of the leaf was determined using water status in the leaf. Because of homeostasis in leaf water potentials, hydraulic conductance in leaves remained stable. As a result, branch dieback, which might be induced by deficits in water supply, could rarely be seen in T. ramosissima owing to the homeostasis in branch and leaf water status. The ion sensitivity of xylem hydraulic conductance in P. euphratica induced an increase in hydraulic conductance caused by the deficits in the water supply which might lead to branch dieback. The evaluation of water relations provides a further understanding of the internal mechanisms of drought acclimation for riparian plants.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3