Research Advances in Plant Physiology and Ecology of Desert Riparian Forests under Drought Stress

Author:

Chen Yaning,Chen Yapeng,Zhou HonghuaORCID,Hao XingmingORCID,Zhu Chenggang,Fu Aihong,Yang YuhaiORCID,Li Weihong

Abstract

Under drought stress, desert riparian forest plants are highly self-regulating and have their own unique water use and regulation strategies, which can respond positively in several aspects such as physiology, ecology, and individual phenotypes when coping and adapting to the stresses brought by external environmental changes. In addition, as an important component of arid zone ecosystems, desert riparian forest plants maintain the cycling process of energy and material in desert areas. Therefore, it is of great ecological value to study the role played by desert riparian forest plants in desertification control and biodiversity conservation in arid zones. The purpose of this study is to provide basic data and scientific basis for the conservation, and restoration of desert riparian forests in the inland river basin of arid zone. In this paper, the physiological and ecological responses of desert riparian plants under drought stress were analyzed by reviewing the literature and focusing on the key scientific issues such as drought avoidance mechanisms, water use, and water redistribution, and the relationship between interspecific water competition and resource sharing of desert riparian plants. The results showed that: (1) In the inland river basin of arid zone, desert riparian plants show a mutual coordination of increasing soluble sugars, proline, malondialdehyde (MDA), and decreasing peroxidase (POD), to form a unique drought avoidance mechanism, and improve their drought tolerance by changing leaf stomatal conductance resulted from regulating abscisic acid (ABA) and cytokinin (CTK) content. (2) Desert riparian forest plants have their own unique water use and regulation strategies. When the degree of drought stress increased, Populus euphratica enhanced the water flow of dominant branches by actively sacrificing the inferior branches to ensure and improve the overall survival chances of the plant, while Tamarix ramosissima weaken hydraulic conductance, and increase subsurface material inputs by reducing plant height to cope with drought stress. (3) The root systems of desert riparian plants have hydraulic uplift and water redistribution functions, and, in the hydraulic uplift process of P. euphratica and T. ramosissima root systems, there is a possibility of assisting with other species in water utilization and the existence of a resource sharing mechanism.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference76 articles.

1. Plant aquaporins: A frontward to make crop plants drought resistant

2. Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition

3. Assessing Riparian Areas of Greece—An Overview

4. An Overview of the Arid Region Science;Chen,2021

5. The future changes of Chinese cryospheric hydrology and their impacts on water security in arid areas;Ding;J. Glaciol. Geocryol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3