Drought resistance in two populations of invasive Tamarix compared using multiple methods

Author:

Long Randall W1ORCID,Pratt R Brandon2ORCID,Jacobsen Anna L2ORCID

Affiliation:

1. Department of Biology, Lewis & Clark , 615 S Palantine Rd, Portland, OR 97219 , USA

2. Department of Biology, California State University , Bakersfield, 9001 Stockdale HWY, Bakersfield, CA 93311 , USA

Abstract

Abstract An on-going question in plant hydraulic research is whether there is intra-specific variability and/or plasticity in xylem traits. Plasticity could be important in taxa that colonize diverse habitats. We used Tamarix, a non-native woody plant, to investigate population differences in hydraulic conductivity (Ks), vulnerability-to-embolism curves and vessel anatomy. We also conducted a season-long drought experiment to determine water potentials associated with crown dieback of field-grown plants. We measured vessel length and diameter, and compared visual (micro-computed tomography; microCT) and hydraulic methods to quantify percentage loss in hydraulic conductivity (PLC). Among plants grown in a common environment, we did not find differences in our measured traits between two populations of Tamarix that differ in salinity at their source habitats. This taxon is relatively vulnerable to embolism. Within samples, large diameter vessels displayed increased vulnerability to embolism. We found that the microCT method overestimated theoretical conductivity and underestimated PLC compared with the hydraulic method. We found agreement for water potentials leading to crown dieback and results from the hydraulic method. Saplings, grown under common conditions in the present study, did not differ in their xylem traits, but prior research has found difference among source-site grown adults. This suggests that plasticity may be key in the success of Tamarix occurring across a range of habits in the arid southwest USA.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sap flow through partially embolized xylem vessel networks;Plant, Cell & Environment;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3