Study on Dissipation Law of Pesticides in Cauliflower Based on Hyperspectral Image Technique

Author:

Li Rui1ORCID,Wang Huaiwen1,Shen Bingbing1,Yao Xingwei2

Affiliation:

1. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China

2. Vegetable Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China

Abstract

In order to rapidly and non-destructively detect the residual rate of emamectin benzoate+indoxacarb pesticides on cauliflower, a study was conducted using hyperspectral technology to investigate the dissipation law of this pesticide over time. Hyperspectral imaging was employed to capture spectral data from cauliflower samples with and without the pesticide, focusing on the region of interest. The spectral data, consisting of 216 bands (ranging from 950 nm to 1666 nm), were preprocessed using techniques such as Savitzky–Golay convolution smoothing (S-G), multivariate scattering correction (MSC), and standard normal variate (SNV). Next, characteristic spectra for each pesticide were extracted using the competitive adaptive reweighted sampling algorithm (CARS). This study utilized the partial least squares (PLS) algorithm to construct a discriminative model aimed at identifying pesticide residues on cauliflower. The accuracy of the hyperspectral imaging technique was validated by comparing the results with those obtained through chromatography. The PLS model, optimized using the SNV method, exhibited the highest discriminant accuracy, achieving a recognition rate of 100%. The residual rate of indoxacarb detected through hyperspectral technology closely corresponded to the results obtained through chromatography. It was found that the discrepancy in the half-life of pesticides as detected by hyperspectral and chromatographic methods is a mere 0.14 days. These findings highlight the potential of hyperspectral imaging technology for studying pesticide dissipation on cauliflower and detecting pesticide residues.

Funder

National Science Foundation of China

China Agriculture Research System of MOF and MARA: the Modern Agroindustry Technology Research System

Tianjin 131 innovative team construction project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3