Coupling Complementary Strategy to U-Net Based Convolution Neural Network for Detecting Lunar Impact Craters

Author:

Mao Yuqing,Yuan Rongao,Li Wei,Liu Yijing

Abstract

Lunar crater detection plays an important role in lunar exploration, while machine learning (ML) exhibits promising advantages in the field. However, previous ML works almost all used a single type of lunar map, such as an elevation map (DEM) or orthographic projection map (WAC), to extract crater features; the two types of images have individual limitations on reflecting the crater features, which lead to insufficient feature information, in turn influencing the detection performance. To address this limitation, we, in this work, propose feature complementary of the two types of images and accordingly explore an advanced dual-path convolutional neural network (Dual-Path) based on a U-NET structure to effectively conduct feature integration. Dual-Path consists of a contracting path, bridging path, and expanding path. The contracting path separately extracts features from DEM and WAC images by means of two independent input branches, while the bridging layer integrates the two types of features by 1 × 1 convolution. Finally, the expanding path, coupled with the attention mechanism, further learns and optimizes the feature information. In addition, a special deep convolution block with a residual module is introduced to avoid network degradation and gradient disappearance. The ablation experiment and the comparison of four competitive models only using DEM features confirm that the feature complementary can effectively improve the detection performance and speed. Our model is further verified by different regions of the whole moon, exhibiting high robustness and potential in practical applications.

Funder

Science & Technology Department of Sichuan Provience

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3