Author:
Khankeshizadeh Ehsan,Tahermanesh Sahand,Mohsenifar Amin,Moghimi Armin,Mohammadzadeh Ali
Reference49 articles.
1. Fire danger monitoring using RADARSAT-1 over northern boreal forests;Abbott;Int. J. Remote Sens.,2007
2. Abdikan, Saygin, Caglar Bayik, Aliihsan Sekertekin, Filiz Bektas Balcik, Sadra Karimzadeh, Masashi Matsuoka, and Fusun Balik Sanli. 2022. Burned area detection using multi-sensor SAR, optical, and thermal data in mediterranean pine forest. Forests 13 (2). https://doi.org/10.3390/f13020347.
3. Alkan, D., and L. Karasaka. 2023. Segmentation of landsat-8 images for burned area detection with deep learning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLVIII-M-1-2023:455-461. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-455-2023.
4. A novel post-fire method to estimate individual tree crown scorch height and volume using simple RPAS-derived data;Arkin;Fire Ecology,2023
5. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna;Arruda;Remote Sens. Appl.: Soc. Environ.,2021