Identification of Lunar Craters in the Chang’e-5 Landing Region Based on Kaguya TC Morning Map

Author:

Liu Yanshuang1,Lai Jialong1ORCID,Xie Minggang2,Zhao Jiannan3ORCID,Zou Chen1,Liu Chaofei1,Qian Yiqing1,Deng Jiahao1

Affiliation:

1. School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. College of Science, Guilin University of Technology, Guilin 541006, China

3. Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences, Wuhan 430074, China

Abstract

Impact craters are extensively researched geological features that contribute to various aspects of lunar science, such as evaluating the model age, regolith thickness, etc. The method for identifying impact craters has gradually transitioned from manual counting to automated identification. Automatic crater detection based on the digital elevation model (DEM) is commonly used to detect larger craters. However, using only DEM has limitations in discerning smaller craters (diameter < ~1 km). This study utilizes an improved Faster R-CNN algorithm and the Kaguya Terrain Camera (TC) morning map to detect small impact craters in the Chang’e-5 (CE-5) landing site. It uses model fusion to improve the precision of small crater identification. The results show a recall rate of 96.33% and a precision value of 90.19% for craters with diameters exceeding 200 m. The model found a total of 187,101 impact craters in the CE-5 region. The spatial distribution density of impact craters with diameters ranging from 100 m to 200 m is approximately 2.5706/km2. For craters with diameters ranging from 200 m to 1 km, the average spatial distribution density is about 0.9016/km2. By the unbiased impact crater density of chronological analysis, the model age of the Im2 and Em4 geological units in the CE-5 region is 3.78 Ga and 2.07 Ga, respectively.

Funder

National Natural Science Foundation of China

B-type Strategic Priority Program of the Chinese Academy of Sciences

Opening Fund of Key Laboratory of Geological Survey and Evaluation of the Ministry of Education

Natural Science Foundation of Jiangxi Province

Youth Talent Project of Science and Technology Plan of Ganzhou

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3