Automated Lunar Crater Identification with Chandrayaan-2 TMC-2 Images using Deep Convolutional Neural Networks

Author:

Sinha Mimansa,Paul Sanchita,Ghosh Mili,Mohanty Sachi Nandan,Pattanayak Radha Mohan

Abstract

AbstractTerrestrial planets and their moons have impact craters, contributing significantly to the complex geomorphology of planetary bodies in our Solar System. Traditional crater identification methods struggle with accuracy because of the diverse forms, locations, and sizes of the craters. Our main aim is to locate lunar craters using images from Terrain Mapping Camera-2 (TMC-2) onboard the Chandrayaan-II satellite. The crater-based U-Net model, a convolutional neural network frequently used in image segmentation tasks, is a deep learning method presented in this study. The task of crater detection was accomplished with the proposed model in two steps: initially, it was trained using Resnet18 as the backbone and U-Net based on Image Net as weights. Secondly, TMC-2 images from Chandrayaan-2 were used to detect craters based on the trained model. The model proposed in this study comprises a neural network, feature extractor, and optimization technique for lunar crater detection. The model achieves 80.95% accuracy using unannotated data and precision and recall are much better with annotated data with an accuracy of 86.91% in object detection with TMC-2 ortho images. 2000 images have been considered for the present work as manual annotation is a time-consuming process and the inclusion of more images can enhance the performance score of the model proposed.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Deep Learning Approach for data analysis on high resolution Chandrayaan-2 Data;2024 IEEE Space, Aerospace and Defence Conference (SPACE);2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3