The Performance Analysis of INS/GNSS/V-SLAM Integration Scheme Using Smartphone Sensors for Land Vehicle Navigation Applications in GNSS-Challenging Environments

Author:

Chiang Kai-Wei,Le Dinh Thuan,Duong Thanh Trung,Sun RuiORCID

Abstract

Modern smartphones contain embedded global navigation satellite systems (GNSSs), inertial measurement units (IMUs), cameras, and other sensors which are capable of providing user position, velocity, and attitude. However, it is difficult to utilize the actual navigation performance capabilities of smartphones due to the low-cost and disparate sensors, software technologies adopted by manufacturers, and the significant influence of environmental conditions. In this study, we proposed a scheme that integrated sensor data from smartphone IMUs, GNSS chipsets, and cameras using an extended Kalman filter (EKF) to enhance the navigation performance. The visual data from the camera was preprocessed using oriented FAST (Features from accelerated segment test) and rotated BRIEF (Binary robust independent elementary features)-simultaneous localization and mapping (ORB-SLAM), rescaled by applying GNSS measurements, and converted to velocity data before being utilized to update the integration filter. In order to verify the performance of the integrated system, field test data was collected in a downtown area of Tainan City, Taiwan. Experimental results indicated that visual data contributed significantly to improving the accuracy of the navigation performance, demonstrating improvements of 43.0% and 51.3% in position and velocity, respectively. It was verified that the proposed integrated system, which used data from smartphone sensors, was efficient in terms of increasing navigation accuracy in GNSS-challenging environments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. The Performance Analysis of Smartphone-Based Pedestrian Dead Reckoning and Wireless Locating Technology for Indoor Navigation Application

2. Strapdown Inertial Navigation Technology;Titterton,2004

3. Principles of GNSS, Inertial, and Multisensor Integrated Navigation System;Groves,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3