Decimeter-Level Accuracy for Smartphone Real-Time Kinematic Positioning Implementing a Robust Kalman Filter Approach and Inertial Navigation System Infusion in Complex Urban Environments

Author:

Pourmina Amir Hossein1ORCID,Alizadeh Mohamad Mahdi12ORCID,Schuh Harald23ORCID

Affiliation:

1. Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran 19697, Iran

2. German Research Center for Geosciences (GFZ), 14473 Potsdam, Germany

3. Institute of Geodesy and Geoinformation Sciences, Technische Universität Berlin, 10587 Berlin, Germany

Abstract

New smartphones provide real-time access to GNSS pseudorange, Doppler, or carrier-phase measurement data at 1 Hz. Simultaneously, they can receive corrections broadcast by GNSS reference stations to perform real-time kinematic (RTK) positioning. This study aims at the real-time positioning capabilities of smartphones using raw GNSS measurements as a conventional method and proposes an improvement to the positioning through the integration of Inertial Navigation System (INS) measurements. A U-Blox GNSS receiver, model ZED-F9R, was used as a benchmark for comparison. We propose an enhanced ambiguity resolution algorithm that integrates the traditional LAMBDA method with an adaptive thresholding mechanism based on real-time quality metrics. The RTK/INS fusion method integrates RTK and INS measurements using an extended Kalman filter (EKF), where the state vector x includes the position, velocity, orientation, and their respective biases. The innovation here is the inclusion of a real-time weighting scheme that adjusts the contribution of the RTK and INS measurements based on their current estimated accuracy. Also, we use the tightly coupled (TC) RTK/INS fusion framework. By leveraging INS data, the system can maintain accurate positioning even when the GNSS data are unreliable, allowing for the detection and exclusion of abnormal GNSS measurements. However, in complex urban areas such as Qazvin City in Iran, the fusion method achieved positioning accuracies of approximately 0.380 m and 0.415 m for the Xiaomi Mi 8 and Samsung Galaxy S21 Ultra smartphones, respectively. The subsequent detailed analysis across different urban streets emphasized the significance of choosing the right positioning method based on the environmental conditions. In most cases, RTK positioning outperformed Single-Point Positioning (SPP), offering decimeter-level precision, while the fusion method bridged the gap between the two, showcasing improved stability accuracy. The comparative performance between the Samsung Galaxy S21 Ultra and Xiaomi Mi 8 revealed minor differences, likely attributed to variations in the hardware design and software algorithms. The fusion method emerged as a valuable alternative when the RTK signals were unavailable or impractical. This demonstrates the potential of integrating RTK and INS measurements for enhanced real-time smartphone positioning, particularly in challenging urban environments.

Publisher

MDPI AG

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3