Unravelling the Influence of Composition and Heat Treatment on Key Characteristics of Dairy Protein Powders Using a Multifactorial Approach

Author:

Lee Jeehyun1ORCID,Martin François12,Goussé Emeline1,Dolivet Anne1,Boissel Françoise1,Paul Arnaud23,Burgain Jennifer3ORCID,Tanguy Gaëlle1,Jeantet Romain1ORCID,Le Floch-Fouéré Cécile1

Affiliation:

1. INRAE, Institut Agro, STLO, 35042 Rennes, France

2. Centre National Interprofessionnel de l’Economie Laitière (CNIEL), 75314 Paris, France

3. Laboratoire LIBio, Université de Lorraine, 54000 Nancy, France

Abstract

The purpose of this study was to improve understanding of the structural and functional property changes that milk-protein concentrates undergo during production, particularly how the manufacturing route (heat treatment position and intensity), standardization (in osmosed water or ultrafiltrate permeate) and formulation (casein:whey protein (Cas:WP) ratio) influence the physico-chemical characteristics—hygroscopicity, particle size, sphericity, density and evolution of browning during storage. To obtain a comprehensive understanding of the parameters responsible for the distinctive characteristics of different powders, a multifactorial approach was adopted. Hygroscopicity depended mainly on the standardizing solution and to a lesser extent the Cas:WP ratio. The particle size of the heat-treated casein-dominant powders was up to 5 μm higher than for those that had had no heat treatment regardless of the standardizing solution, which also had no influence on the sphericity of the powder particles. The density of the powders increased up to 800 kg·m−3 with a reduced proportion of casein, and lactose and whey proteins participated in browning reactions during storage at 13 °C. In increasing order, the modality of heat treatment, the standardizing solution and the Cas:WP protein ratio influenced the key characteristics. This work is relevant for industrial applications to increase control over the functionalities of powdered products.

Funder

Centre National Interprofessionnel de l’Industrie Laitière

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3