In Silico Screening of a Bile Acid Micelle Disruption Peptide for Oral Consumptions from Edible Peptide Database

Author:

Imai Kento,Takeuchi Yuri,Shimizu KazunoriORCID,Honda Hiroyuki

Abstract

Recently, many bioactive peptides have been identified using bioinformatics tools. Previously, our group developed a method to screen dual-functional peptides that have direct intestinal delivery with porous silica gel and bile acid micelle disruption. However, newly designed peptides were not found in any storage protein. Therefore, in this study, in silico screening was performed using a 350,000 edible peptide library consisting of 4- to 7-mer independent peptides. As an initial screening, all edible peptides were applied to the random forest model to select predicted positive peptides. For a second screening, the peptides were assessed for the possibility of intestinal delivery using a 3D color map. From this approach, three novel dual-functional peptides, VYVFDE, WEFIDF, and VEEFYC were identified, and all of them were derived from storage proteins (legumin, myosin, and 11S globulin). In particular, VEEFYCS, in which a serine residue (S) is added to VEEFYC, was assumed to be released by thermolysin from the 11S-globulin derived from Ginkgo biloba by LC-MS/MS analysis. VEEFYCS was found to have suitable direct intestinal delivery and bile acid micelle disruption activity.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3