Effects of Pressure Level and Time Treatment of High Hydrostatic Pressure (HHP) on Inulin Gelation and Properties of Obtained Hydrogels

Author:

Florowska AnnaORCID,Florowski TomaszORCID,Sokołowska BarbaraORCID,Adamczak LechORCID,Szymańska Iwona

Abstract

The aim of this study was the evaluation of the influence of different HHP levels (150 and 300 MPa) and time treatment (5, 10, 20 min) on the gelation and properties of hydrogels with different inulin concentration (15, 20, 25 g/100 g). High-pressure treatment, in tested ranges, induces inulin gels and allows obtaining gel structures even at a lowest tested inulin content (i.e., 15 g/100 g). Selecting the pressure parameters, it is possible to modify the characteristics of the created hydrogels. The use of higher pressure (i.e., 300 MPa) allows to increase the stability of the hydrogels and change their structure to more compressed, which results in higher yield stress, lower spreadability, harder and more adhesive structure. For example, increasing the inulin gelling induction pressure (concentration 20 g/100 g) from 150 to 300 MPa with a time treatment of 10 min resulted in an increase in yield stress from 38.1 to 711.7 Pa, spreadability force from 0.59 to 4.59 N, firmness from 0.11 to 1.46 N, and adhesiveness from −0.06 to −0.65 N. Extending the time treatment of HHP increases this effect, but mainly when higher pressure and a higher concentration of inulin are being used. For example, extension of time treatment at 300 MPa pressure from 5 to 20 min resulted in an increase in yield stress from 774.8 to 1273.8 Pa, spreadability force from 6.28 to 8.43 N, firmness from 1.87 to 2.98 N, and adhesiveness from −0.94 to −1.27 N. The obtained results indicate the possibility of using HHP to create inulin hydrogels tailored to the characteristics in a specific food product.

Funder

National Science Center

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3