Effects of Sequential Induction Combining Thermal Treatment with Ultrasound or High Hydrostatic Pressure on the Physicochemical and Mechanical Properties of Pea Protein–Psyllium Hydrogels as Elderberry Extract Carriers

Author:

Hilal Adonis1ORCID,Florowska Anna1ORCID,Florowski Tomasz1ORCID,Rybak Katarzyna2ORCID,Domian Ewa2ORCID,Szymański Marcin1,Wroniak Małgorzata1ORCID

Affiliation:

1. Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

2. Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

Abstract

Entrapping bioactive ingredients like elderberry extract in hydrogels improves their stability and functionality in food matrices. This study assessed the effect of sequential thermal treatment with ultrasound (US) or high hydrostatic pressure (HHP) and treatment duration on pea protein–psyllium hydrogels as elderberry extract carriers. Measurements included color parameters, extract entrapment efficiency, physical stability, textural properties, microrheology, FT-IR, thermal degradation (TGA), SEM images, total polyphenols content, antioxidant activity, and reducing power. The control hydrogel was obtained using only thermal induction. Both treatments impacted physical stability by affecting biopolymer aggregate structures. Thermal and US combined induction resulted in hydrogels with noticeable color changes and reduced entrapment efficiency. Conversely, thermal and HHP-combined induction, especially with extended secondary treatment (10 min), enhanced hydrogel strength, uniformity, and extract entrapment efficiency (EE = 33% for P10). FT-IR and TGA indicated no chemical structural alterations post-treatment. Sequential thermal and HHP induction preserved polyphenol content, antioxidant activity (ABTS = 5.8 mg TE/g d.m.; DPPH = 11.1 mg TE/g d.m.), and reducing power (RP = 1.08 mg TE/g d.m.) due to the dense hydrogel structure effectively enclosing the elderberry extract. Sequential thermal and HHP induction was more effective in developing pea protein–psyllium hydrogels for elderberry extract entrapment.

Funder

Food and Nutrition Centre-modernization of the WULS campus to create a Food and Nutrition Research and Development Centre

European Regional Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3