Progress in the Preparation and Application of Inulin-Based Hydrogels

Author:

Liang Xiaoxu1ORCID,Lin Danlei2,Zhang Wen2,Chen Shiji2ORCID,Ding Hongyao3ORCID,Zhong Hai-Jing2ORCID

Affiliation:

1. Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China

2. State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China

3. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

Abstract

Inulin, a natural polysaccharide, has emerged as a promising precursor for the preparation of hydrogels due to its biocompatibility, biodegradability, and structural versatility. This review provides a comprehensive overview of the recent progress in the preparation, characterization, and diverse applications of inulin-based hydrogels. Different synthesis strategies, including physical methods (thermal induction and non-thermal induction), chemical methods (free-radical polymerization and chemical crosslinking), and enzymatic approaches, are discussed in detail. The unique properties of inulin-based hydrogels, such as stimuli-responsiveness, antibacterial activity, and their potential as fat replacers, are highlighted. Special emphasis is given to their promising applications in drug delivery systems, especially for colon-targeted delivery, due to the selective degradation of inulin via colonic microflora. The ability to incorporate both hydrophilic and hydrophobic drugs further expands their therapeutic potential. In addition, the applications of inulin-based hydrogels in responsive materials, the food industry, wound dressings, and tissue engineering are discussed. While significant progress has been achieved, challenges and prospects in optimizing synthesis, improving mechanical properties, and exploring new functionalities are discussed. Overall, this review highlights the remarkable properties of inulin-based hydrogels as a promising class of biomaterials with immense potential in the biomedical, pharmaceutical, and materials science fields.

Funder

Start-up Research Foundation from Guangzhou Maritime University/ Guangzhou Jiaotong University

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3