Binary Pea Protein–Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics

Author:

Hilal Adonis1ORCID,Florowska Anna1ORCID,Domian Ewa2ORCID,Wroniak Małgorzata1ORCID

Affiliation:

1. Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

2. Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

Abstract

Food hydrogels, used as delivery systems for bioactive compounds, can be formulated with various food-grade biopolymers. Their industrial utility is largely determined by their physicochemical properties. However, comprehensive data on the properties of pea protein–psyllium binary hydrogels under different pH and ionic strength conditions are limited. The aim of this research was to evaluate the impact of pH (adjusted to 7, 4.5, and 3) and ionic strength (modified by NaCl addition to 0.15 and 0.3 M) on the physical stability, color, texture, microrheological, and viscoelastic properties of these hydrogels. Color differences were most noticeable at lower pH levels. Inducing hydrogels at pH 7 (with or without NaCl) and pH 4.5 and 3 (without NaCl) resulted in complete gel structures with low stability, low elastic and storage moduli, and low complex viscosity, making them easily spreadable. Lower pH inductions (4.5 and 3) in the absence of NaCl resulted in hydrogels with shorter linear viscoelastic regions. Hydrogels induced at pH 4.5 and 3 with NaCl had high structural stability, high G’ and G” moduli, complex viscosity, and high spreadability. Among the tested induction conditions, pH 3 with 0.3 M NaCl allowed for obtaining a hydrogel with the highest elastic and storage moduli values. Adjusting pH and ionic strength during hydrogel induction allows for modifying and tailoring their properties for specific industrial applications.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3