A Redundant Measurement-Based Maximum Correntropy Extended Kalman Filter for the Noise Covariance Estimation in INS/GNSS Integration

Author:

Wang Dapeng1ORCID,Zhang Hai12,Huang Hongliang1ORCID,Ge Baoshuang3ORCID

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China

2. Science and Technology on Aircraft Control Laboratory, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China

3. Yancheng State-Owned Assets Investment Group Co., Ltd., No. 669 Century Avenue, Yandu District, Yancheng 224000, China

Abstract

The resolution accuracy of the inertial navigation system/global navigation satellite system (INS/GNSS) integrated system would be degraded in challenging areas. This paper proposed a novel algorithm, which combines the second-order mutual difference method with the maximum correntropy criteria extended Kalman filter to address the following problems (1) the GNSS measurement noise estimation cannot be isolated from the state estimation and suffers from the auto-correlated statistic sequences, and (2) the performance of EKF would be degraded under the non-Gaussian condition. In detail, the proposed algorithm determines the possible distribution of the measurement noise by a kernel density function detection, then depending on the detection result, either the difference sequences–based method or an autoregressive correction algorithm’s result is utilized for calculating the noise covariance. Then, the obtained measurement noise covariance is used in MCEKF instead of EKF to enhance filter adaptiveness. Meanwhile, to enhance the numerical stability of the MCEKF, we adopted the Cholesky decomposition to calculate the matrix inverse in the kernel function. The road experiment verified that our proposed method could achieve more accurate navigation resolutions than the compared ones.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3