Abstract
Aiming to improve the navigation accuracy during global navigation satellite system (GNSS) outages, an algorithm based on long short-term memory (LSTM) is proposed for aiding inertial navigation system (INS). The LSTM algorithm is investigated to generate the pseudo GNSS position increment substituting the GNSS signal. Almost all existing INS aiding algorithms, like the multilayer perceptron neural network (MLP), are based on modeling INS errors and INS outputs ignoring the dependence of the past vehicle dynamic information resulting in poor navigation accuracy. Whereas LSTM is a kind of dynamic neural network constructing a relationship among the present and past information. Therefore, the LSTM algorithm is adopted to attain a more stable and reliable navigation solution during a period of GNSS outages. A set of actual vehicle data was used to verify the navigation accuracy of the proposed algorithm. During 180 s GNSS outages, the test results represent that the LSTM algorithm can enhance the navigation accuracy 95% compared with pure INS algorithm, and 50% of the MLP algorithm.
Funder
the National Key Research and Development Program of China
the Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献