Motion-Constrained GNSS/INS Integrated Navigation Method Based on BP Neural Network

Author:

Xu Ying,Wang Kun,Jiang Changhui,Li ZeyuORCID,Yang ChengORCID,Liu Dun,Zhang Haiping

Abstract

The global navigation satellite system (GNSS) and inertial navigation system (INS) integrated navigation system have been widely used in Intelligent Transportation Systems (ITSs). However, the positioning error of integrated navigation systems is rapidly divergent when GNSS outages occur. Motion constraint and back propagation (BP) neural networks can provide additional knowledge to solve this issue. However, the predictions of a neural network have outliers and motion constraint is difficult to adapt according to the motion states of vehicles and boats. Therefore, this paper fused a BP neural network with motion constraints, and proposed a motion-constrained GNSS/INS integrated navigation method based on a BP neural network (MC-BP method). The pseudo-measurement of the GNSS was predicted using a fitting model trained by the BP neural network. At the same time, the prediction outliers were detected and corrected using motion constraint. To assess the performance of the proposed method, simulated and real data experiments were conducted with a vehicle on land and a boat offshore. A classical GNSS/INS integration algorithm, a motion-constrained GNSS/INS algorithm, and the proposed method were compared through data processing. Compared with the classical GNSS/INS integration algorithm and the motion-constrained GNSS/INS algorithm, the positioning accuracies of the proposed method were improved by 90% and 64%, respectively, in the vehicle land experiment. Similar performances were found in the offshore boat experiment. Using the proposed MC-BP method, improved meter-level-positioning results can be achieved with the GNSS/INS integration algorithm when GNSS outages occur.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3