A Domain-Specific Generative Chatbot Trained from Little Data

Author:

Kapočiūtė-Dzikienė Jurgita

Abstract

Accurate generative chatbots are usually trained on large datasets of question–answer pairs. Despite such datasets not existing for some languages, it does not reduce the need for companies to have chatbot technology in their websites. However, companies usually own small domain-specific datasets (at least in the form of an FAQ) about their products, services, or used technologies. In this research, we seek effective solutions to create generative seq2seq-based chatbots from very small data. Since experiments are carried out in English and morphologically complex Lithuanian languages, we have an opportunity to compare results for languages with very different characteristics. We experimentally explore three encoder–decoder LSTM-based approaches (simple LSTM, stacked LSTM, and BiLSTM), three word embedding types (one-hot encoding, fastText, and BERT embeddings), and five encoder–decoder architectures based on different encoder and decoder vectorization units. Furthermore, all offered approaches are applied to the pre-processed datasets with removed and separated punctuation. The experimental investigation revealed the advantages of the stacked LSTM and BiLSTM encoder architectures and BERT embedding vectorization (especially for the encoder). The best achieved BLUE on English/Lithuanian datasets with removed and separated punctuation was ~0.513/~0.505 and ~0.488/~0.439, respectively. Better results were achieved with the English language, because generating different inflection forms for the morphologically complex Lithuanian is a harder task. The BLUE scores fell into the range defining the quality of the generated answers as good or very good for both languages. This research was performed with very small datasets having little variety in covered topics, which makes this research not only more difficult, but also more interesting. Moreover, to our knowledge, it is the first attempt to train generative chatbots for a morphologically complex language.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3