Review of Intent Detection Methods in the Human-Machine Dialogue System

Author:

Liu Jiao,Li Yanling,Lin Min

Abstract

Abstract Spoken language understanding is an important part of the human-machine dialogue system, intent detection is a sub-task of spoken language understanding, and it is very important. The accuracy of intent detection is directly related to the performance of semantic slot filling, and it is helpful to the following research of the dialogue system. Considering the difficulty of intent detection in human-machine dialogue system, the traditional machine learning method cannot understand the deep semantic information of user’s discourse. This paper mainly analyzes, compares and summarizes the deep learning methods applied in the research of intent detection in recent years, and further considers how to apply deep learning model to multi-intent detection task, so as to promote the research of multi-intent detection methods based on deep neural network.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference37 articles.

1. A survey on dialogue systems: recent advances and new frontiers[J];Chen;Acm Sigkdd Explorations Newsletter,2017

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying intentions in conversational tools: a systematic mapping;Proceedings of the 20th Brazilian Symposium on Information Systems;2024-05-20

2. Anti-Drugs Chatbot: Chinese BERT-Based Cognitive Intent Analysis;IEEE Transactions on Computational Social Systems;2024-02

3. An intent recognition pipeline for conversational AI;International Journal of Information Technology;2023-12-29

4. Federated Learning for Intent Classification;2023 IEEE 19th International Conference on Intelligent Computer Communication and Processing (ICCP);2023-10-26

5. Improving social interaction of the visually impaired individuals through conversational assistive technology;International Journal of Intelligent Computing and Cybernetics;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3