Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris

Author:

Wang Jinnan,Zafar Muhammad QasimORCID,Chen Yunbo,Pan Peng,Zuo Lingli,Zhao Haiyan,Zhang Xiangjun

Abstract

The stability and reliability of braking system are essential factors for the safe operation of high-speed trains. In the proposed work, tribological properties of a newly developed brake disc material namely BD-1 were studied considering the thermal-mechanical effects, as well as the evolutions of wear debris, were particularly examined. The tribological properties were also compared with an existing commercial brake disc material namely BD-2 in text. Friction and wear tests were carried out on BD-1 and BD-2 against a commercial brake pad material (BP) to simulate the real emergence braking conditions of a 350 km/h high-speed railway. The thermal-mechanical coupling effects of the friction velocity, wear mass, temperatures and the friction coefficient were investigated. Local wear track and wear debris were analyzed by using SEM and EDS. Results show that the shape and size of wear debris evolve as the dominant wear mechanism varies during braking tests. As the sliding speed increases from 250 to 1250 rpm, the debris may become fine particles, then into a mixture of lamellar shape and flake shape, and finally becomes fine particles again at high speed. The maximum size of wear debris is first from 20 μm to 65 μm, and then down to 10 μm. As the local area temperature increased by more than 400 °C, debris adhere to the surface forming an adhesive layer that may act as a lubricant. Debris may help to form an adhesive lubrication layer and undertake plastics defor-mation at the speed range of 500–1000 rpm. The local area temperatures prompted the wear debris adhesion and oxidation. After reaching a certain speed limit, a uniform third body appears to protect the material surface from high speed and high temperature. Results suggested that the BD-1 could be a good candidate braking material for high-speed railway applications.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

National Key R&D Program of China

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3