Study on the thermal decay mechanism of basalt fiber reinforced resin based friction materials

Author:

Fang Shanglong,Xiao Wei,Chen Kewen,Song Xuding

Abstract

Purpose Resin-based friction materials are the most widely used key materials in industry for braking and transmission. However, the friction coefficient of resin-based friction materials significantly decreases at temperatures above 300°C, which reduces their friction performance. Design/methodology/approach This study combines elevated-temperature mechanical experiments with friction and wear experiments to explain the thermal degradation resistance performance and temperature recovery performance of resin-based friction materials. It also investigates the influence of friction material strength and worn morphology on the friction coefficient of materials at elevated temperature. Findings The experimental results show that the increase in friction coefficient of friction materials below 300°C is mainly due to the increase in worn morphology characterization parameters, and the thermal degradation phenomenon above 300°C is mainly due to the decrease of shear strength of friction film. Basalt fiber can significantly improve the thermal degradation resistance of friction materials. The friction coefficient of basalt fiber-reinforced specimens after thermal degradation reaches 0.421–0.443, which is 19–25% higher than the original. The thermal decay rate is 9.03–11.0%, which is 7.9–9.87% lower than the original. Moreover, the friction coefficient has good cooling recovery performance. Originality/value Revealed the thermal degradation mechanism of resin-based friction materials, verified that basalt fibers can improve the thermal degradation resistance of friction materials and provided reference for the development of new friction materials.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3