Analyze the Wear Mechanism of the Longwall Shearer Haulage System

Author:

Jaśkowiec Krzysztof12ORCID,Pirowski Zenon1ORCID,Głowacki Mirosław23,Bisztyga-Szklarz Magdalena1ORCID,Bitka Adam1,Małysza Marcin12ORCID,Wilk-Kołodziejczyk Dorota12ORCID

Affiliation:

1. Łukasiewicz Research Network—Krakow Institute of Technology, Zakopiańska 73, 30-418 Kraków, Poland

2. Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology in Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland

3. Faculty of Natural Sciences, Jan Kochanowski University of Kielce, ul. Żeromskiego, 25-369 Kielce, Poland

Abstract

The wear characteristics and related mechanisms of the Longwall Shearer Haulage System were investigated. Wear is one of the main reasons for failures and downtimes. This knowledge can help solve engineering problems. The research was carried out at a laboratory station and a test stand. The publication presents the results of tribological tests carried out in laboratory conditions. The aim research was to select the alloy intended for casting the toothed segments of the haulage system. The track wheel was made by the forging method using steel 20H2N4A. Haulage System was tested on the ground using a longwall shearer. Selected toothed segments were subjected to tests on this stand. The cooperation of the track wheel and toothed segments in the tootbar were analyzed by a 3D scanner. Debris chemical composition was also appointed, as well as mass loss of toothed segments. The developed solution toothed segment an increase in the service life of the track wheel in real conditions. The results of the research also contribute to reducing the operating costs of the mining process.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3