Influence of Interfacial Intermetallic Growth on the Mechanical Properties of Sn-37Pb Solder Joints under Extreme Temperature Thermal Shock

Author:

Hang Chunjin,Tian Ruyu,Zhao Liyou,Tian Yanhong

Abstract

Solder joints in thermally uncontrolled microelectronic assemblies have to be exposed to extreme temperature environments during deep space exploration. In this study, extreme temperature thermal shock test from −196 °C to 150 °C was performed on quad flat package (QFP) assembled with Sn-37Pb solder joints to investigate the evolution and growth behavior of interfacial intermetallic compounds (IMCs) and their effect on the pull strength and fracture behavior of Sn-37Pb solder joints under extreme temperature environment. Both the scallop-type (Cu, Ni)6Sn5 IMCs at the Cu lead side and the needle-type (Ni, Cu)3Sn4 IMCs at the Ni-P layer side changed to plane-type IMCs during extreme temperature thermal shock. A thin layer of Cu3Sn IMCs was formed between the Cu lead and (Cu, Ni)6Sn5 IMC layer after 150 cycles. The growth of the interfacial IMCs at the lead side and the Ni-P layer side was dominated by bulk diffusion and grain-boundary diffusion, respectively. The pull strength was reduced about 31.54% after 300 cycles. With increasing thermal shock cycles, the fracture mechanism changed from ductile fracture to mixed ductile–brittle fracture, which can be attributed to the thickening of the interfacial IMCs, and the stress concentration near the interface caused by interfacial IMC growth.

Funder

National Natural Science Foundation of China

Program for New Century Excellent Talents in University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3