Random Forest Classification of Inundation Following Hurricane Florence (2018) via L-Band Synthetic Aperture Radar and Ancillary Datasets

Author:

Melancon Alexander M.,Molthan Andrew L.,Griffin Robert E.ORCID,Mecikalski John R.,Schultz Lori A.,Bell Jordan R.

Abstract

In response to Hurricane Florence of 2018, NASA JPL collected quad-pol L-band SAR data with the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, observing record-setting river stages across North and South Carolina. Fully-polarized SAR images allow for mapping of inundation extent at a high spatial resolution with a unique advantage over optical imaging, stemming from the sensor’s ability to penetrate cloud cover and dense vegetation. This study used random forest classification to generate maps of inundation from L-band UAVSAR imagery processed using the Freeman–Durden decomposition method. An average overall classification accuracy of 87% is achieved with this methodology, with areas of both under- and overprediction for the focus classes of open water and inundated forest. Fuzzy logic operations using hydrologic variables are used to reduce the number of small noise-like features and false detections in areas unlikely to retain water. Following postclassification refinement, estimated flood extents were combined to an event maximum for societal impact assessments. Results from the Hurricane Florence case study are discussed in addition to the limitations of available validation data for accuracy assessments.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3