Application of Gated Recurrent Unit Neural Network for Flood Extraction from Synthetic Aperture Radar Time Series

Author:

Zhang Ming12,Xie Chou12ORCID,Tian Bangsen12ORCID,Yang Yanchen12,Guo Yihong12,Zhu Yu12,Bian Shuaichen12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100000, China

2. University of Chinese Academy of Sciences, Beijing 100000, China

Abstract

Floods are a sudden and influential natural disaster, and synthetic aperture radar (SAR) can image the Earth’s surface almost independently of time and weather conditions, making it particularly suitable for extracting flood ranges in time. Platforms such as Google Earth Engine (GEE) can provide a large amount of SAR data and preprocess it, providing powerful assistance for real-time flood monitoring and time series analysis. However, the application of long-term series data combined with recurrent neural networks (RNNs) to monitor floods has been lacking in current research, and the accuracy of flood extraction in open water surfaces remains unsatisfactory. In this study, we proposed a new method of near real-time flood monitoring with a higher accuracy. The method utilizes SAR image time series to establish a gated recurrent unit (GRU) neural network model. This model was used to predict normal flood-free surface conditions. Flood extraction was achieved by comparing and analyzing the actual flood surface conditions with the predicted conditions, using a parameter called Scores. Our method demonstrated significant improvements in accuracy compared to existing algorithms like the OTSU algorithm, Sentinel-1 Dual Polarized Water Index (SDWI) algorithm, and Z-score algorithm. The overall accuracy of our method was 99.20%, which outperformed the Copernicus Emergency Management Service (EMS) map. Importantly, our method exhibited high stability as it allowed for fluctuation within the normal range, enabling the extraction of the complete flood range, especially in open water surfaces. The stability of our method makes it suitable for the flood monitoring of future open-access SAR data, including data from future Sentinel-1 missions.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3