Two decades of nighttime surface urban heat island intensity analysis over nine major populated cities of India and implications for heat stress

Author:

Jain Madhavi

Abstract

Warmer global climate and urban heat islands (UHIs) interact, by exacerbating heatwaves and increasing the extreme heat days in cities. The implications of added heat stress in urban environments due to intensifying surface UHIs (SUHIs) is of utmost concern. Seasonal, annual and decadal nighttime SUHI intensities (SUHIIs), from 2001 to 2020, for nine major populated cities of India are analyzed. This includes five megacities- Delhi, Mumbai, Kolkata, Bangalore, and Chennai, and four incipient megacities- Hyderabad, Ahmedabad, Surat, and Pune. The key role of increasing urbanization (pre- and post-2010) in expansion and intensification of nighttime SUHIs in India is highlighted. For all cities either pre-monsoon (MAM) or winter (December-February; DJF) seasons show the strongest SUHII development. During the 2001–2010, and the 2011–2020 decade, a nighttime SUHII maxima of respectively (i) 2.1°C and 2.5°C for Delhi, (ii) 1.3°C and 1.5°C for Mumbai, (iii) 1.3°C and 1.5°C for Kolkata, (iv) 0.6°C and 1.0°C Bangalore, (v) 1.7°C and 1.9°C for Chennai, (vi) 1.8°C and 2.3°C for Hyderabad, (vii) 2.8°C and 3.1°C for Ahmedabad, (viii) 1.9°C and 2.4°C for Surat, and (ix) 0.8°C and 1.3°C for Pune is noted. Further, all incipient megacities showed a mean annual growth rate of nighttime SUHII of over 0.007°C/year, substantially greater than in the megacities. High SUHII magnitudes, greater growth rates of SUHII, and huge populations, severely compounds the vulnerability of Indian cities to excessive heat exposure risk, especially during MAM heatwaves. Lastly, the implications of nighttime SUHII findings from the present study, on the increase in heat stress, the loss of labor productivity and the rise in heat-related mortality rate is emphasized. The study recommends implementation of city-specific action plans to mitigate the heat stressed urban environment. Targeted use of cooling strategies in localized hotspots within the urban areas where high intensity SUHIs are likely to form is also suggested.

Publisher

Frontiers Media SA

Subject

Public Administration,Urban Studies,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3