Integrating Multi-Scale Remote-Sensing Data to Monitor Severe Forest Infestation in Response to Pine Wilt Disease

Author:

Li Xiujuan,Liu Yongxin,Huang Pingping,Tong Tong,Li Linyuan,Chen Yuejuan,Hou Ting,Su Yun,Lv Xiaoqi,Fu Wenxue,Huang Xiaojun

Abstract

Pine wilt disease (PWD) is one of the most destructive forest diseases that has led to rapid wilting and mortality in susceptible host pine trees. Spatially explicit detection of pine wood nematode (PWN)-induced infestation is important for forest management, policy making, and practices. Previous studies have mapped forest disturbances in response to various forest diseases and/or insects over large areas using remote-sensing techniques, but these efforts were often constrained by the limited availability of ground truth information needed for the calibration and validation of moderate-resolution satellite algorithms in the process of linking plot-scale measurements to satellite data. In this study, we proposed a two-level up-sampling strategy by integrating unmanned aerial vehicle (UAV) surveys and high-resolution Radarsat-2 satellite imagery for expanding the number of training samples at the 30-m resampled Sentinel-1 resolution. Random forest algorithms were separately used in the prediction of the Radarsat-2 and Sentinel-1 infestation map induced by PWN. After data acquisition in Muping District during August and September 2021, we first verified the ability of a deep-learning-based object detection algorithm (i.e., YOLOv5 model) in the detection of infested trees from coregistered UAV-based RGB images (Average Precision (AP) of larger than 70% and R2 of 0.94). A random forest algorithm trained using the up-sampling UAV infestation map reference and corresponding Radarsat-2 pixel values was then used to produce the Radarsat-2 infestation map, resulting in an overall accuracy of 72.57%. Another random forest algorithm trained using the Radarsat-2 infestation pixels with moderate and high severity (i.e., an infestation severity of larger than 0.25, where the value was empirically set based on a trade-off between classification accuracy and infection detectability) and corresponding Sentinel-1 pixel values was subsequently used to predict the Sentinel-1 infestation map, resulting in an overall accuracy of 87.63%, where the validation data are Radarsat-2 references rather than UAV references. The Sentinel-1 map was also validated by independent UAV surveys, with an overall accuracy of 76.30% and a Kappa coefficient of 0.45. We found that the expanded training samples by the integration of UAV and Radarsat-2 strengthened the medium-resolution Sentinel-1-based prediction model of PWD. This study demonstrates that the proposed method enables effective PWN infestation mapping over multiple scales.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Guidance Project of Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3