Improving Structural, Physical, and Sensitive Properties of Sodium Alginate–Purple Sweet Potato Peel Extracts Indicator Films by Varying Drying Temperature

Author:

Li Wenxin1,Zhao Mengna1,Xia Xiufang1ORCID,Zhu Yingchun2ORCID

Affiliation:

1. College of Food Science, Northeast Agricultural University, Harbin 150030, China

2. College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

Sodium alginate (SA)–purple sweet potato peel extracts (PPE) from industrial waste indicator films were developed at different drying temperatures (25, 30, 35, 40, 45, 50, and 55 °C). The effects of drying temperatures on the film’s structural, physical, and sensitive properties were investigated. On the structural properties, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction indicated that compactness, intermolecular interactions, and crystallinity of indicator films were improved at a lower drying temperature. On the physical properties, with the drying temperature increasing, elongation at the break increased significantly (p < 0.05); ΔE and water-vapor permeability decreased significantly (p < 0.05); and thickness and tensile strength initially increased significantly (90.46 → 98.46, 62.99 → 95.73) and subsequently decreased significantly (98.46 → 71.93, 95.73 → 55.44) (p < 0.05), with the maximum values obtained at 30 °C. On sensitivity, the corresponding colors of the films became lighter as the drying temperature increased, and the films exhibited relatively excellent pH and NH3 sensitivity, with easily discernible color changes at lower temperatures. The results of this paper revealed that the overall film characteristics are improved at lower drying temperatures, which will provide valuable references for selecting the drying temperature for preparing indicator films as a guide for industrialized production.

Funder

Shanxi Province Key R&D Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3