Abstract
Load capacity is an important index to reflect the practicability of legged robots. Existing research into quadruped robots has not analyzed their load performance in terms of their structural design and control method from a systematic point of view. This paper proposes a structural design method and crawling pattern generator for a planar quadruped robot that can realize high-payload locomotion. First, the functions required to evaluate the leg’s load capacity are established, and quantitative comparative analyses of the candidates are performed to select the leg structure with the best load capacity. We also propose a highly integrated design method for a driver module to improve the robot’s load capacity. Second, in order to realize stable load locomotion, a novel crawling pattern generator based on trunk swaying is proposed which can realize lateral center of mass (CoM) movement by adjusting the leg lengths on both sides to change the CoM projection in the trunk width direction. Finally, loaded crawling simulations and experiments performed with our self-developed quadruped robot show that stable crawling with load ratios exceeding 66% can be realized, thus verifying the effectiveness and superiority of the proposed method.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献