Learning and Reusing Quadruped Robot Movement Skills from Biological Dogs for Higher-Level Tasks

Author:

Wan Qifeng1,Luo Aocheng1,Meng Yan1,Zhang Chong2,Chi Wanchao2,Zhang Shenghao2,Liu Yuzhen2,Zhu Qiuguo3,Kong Shihan1,Yu Junzhi14ORCID

Affiliation:

1. State Key Laboratory for Turbulence and Complex Systems, Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, China

2. Tencent Robotics X, Shenzhen 518057, China

3. Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

4. Science and Technology on Integrated Information System Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

Abstract

In the field of quadruped robots, the most classic motion control algorithm is based on model prediction control (MPC). However, this method poses challenges as it necessitates the precise construction of the robot’s dynamics model, making it difficult to achieve agile movements similar to those of a biological dog. Due to these limitations, researchers are increasingly turning to model-free learning methods, which significantly reduce the difficulty of modeling and engineering debugging and simultaneously reduce real-time optimization computational burden. Inspired by the growth process of humans and animals, from learning to walk to fluent movements, this article proposes a hierarchical reinforcement learning framework for the motion controller to learn some higher-level tasks. First, some basic motion skills can be learned from motion data captured from a biological dog. Then, with these learned basic motion skills as a foundation, the quadruped robot can focus on learning higher-level tasks without starting from low-level kinematics, which saves redundant training time. By utilizing domain randomization techniques during the training process, the trained policy function can be directly transferred to a physical robot without modification, and the resulting controller can perform more biomimetic movements. By implementing the method proposed in this article, the agility and adaptability of the quadruped robot can be maximally utilized to achieve efficient operations in complex terrains.

Funder

Beijing Natural Science Foundation

CIE-Tencent Robotics X Rhino-Bird Focused Research Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3