A Hierarchical Framework for Quadruped Robots Gait Planning Based on DDPG

Author:

Li Yanbiao12,Chen Zhao123,Wu Chentao12,Mao Haoyu123,Sun Peng123ORCID

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China

3. Huzhou Institute of Digital Economy and Technology, Zhejiang University of Technology, Huzhou 313000, China

Abstract

In recent years, significant progress has been made in employing reinforcement learning for controlling legged robots. However, a major challenge arises with quadruped robots due to their continuous states and vast action space, making optimal control using simple reinforcement learning controllers particularly challenging. This paper introduces a hierarchical reinforcement learning framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm to achieve optimal motion control for quadruped robots. The framework consists of a high-level planner responsible for generating ideal motion parameters, a low-level controller using model predictive control (MPC), and a trajectory generator. The agents within the high-level planner are trained to provide the ideal motion parameters for the low-level controller. The low-level controller uses MPC and PD controllers to generate the foot-end force and calculates the joint motor torque through inverse kinematics. The simulation results show that the motion performance of the trained hierarchical framework is superior to that obtained using only the DDPG method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3