Influence of Energetic Particles and Electron Injection on Minority Carrier Transport Properties in Gallium Oxide

Author:

Modak Sushrut1ORCID,Ruzin Arie2,Schulte Alfons13ORCID,Chernyak Leonid1

Affiliation:

1. Physics Department, University of Central Florida, Orlando, FL 32816, USA

2. School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

3. College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA

Abstract

The influence of various energetic particles and electron injection on the transport of minority carriers and non-equilibrium carrier recombination in Ga2O3 is summarized in this review. In Ga2O3 semiconductors, if robust p-type material and bipolar structures become available, the diffusion lengths of minority carriers will be of critical significance. The diffusion length of minority carriers dictates the functionality of electronic devices such as diodes, transistors, and detectors. One of the problems in ultrawide-bandgap materials technology is the short carrier diffusion length caused by the scattering on extended defects. Electron injection in n- and p-type gallium oxide results in a significant increase in the diffusion length, even after its deterioration, due to exposure to alpha and proton irradiation. Furthermore, post electron injection, the diffusion length of an irradiated material exceeds that of Ga2O3 prior to irradiation and injection. The root cause of the electron injection-induced effect is attributed to the increase in the minority carrier lifetime in the material due to the trapping of non-equilibrium electrons on native point defects. It is therefore concluded that electron injection is capable of “healing” the adverse impact of radiation in Ga2O3 and can be used for the control of minority carrier transport and, therefore, device performance.

Funder

US-Israel Binational Science Foundation

National Science Foundation

NATO

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference80 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3