Author:
Zhang Jianghua,Yang Shasha,Cai Weijie,Yin Fawen,Jia Jin,Zhou Dayong,Zhu Beiwei
Abstract
It is highly desirable that efficient recoverable heterogeneous catalysts should be developed to replace the costly biocatalysts used in producing structured phospholipids (SPLs) with medium-chain fatty acids (MCFAs). Thus, mesoporous propyl and phenyl sulfonic acid-functionalized SBA-15 materials synthesized via surface modification methods were investigated for the soybean lecithin interesterification with methyl caprate or caprylate. The physicochemical properties of the synthesized solid acids were deeply studied by small-angle X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared and pyridine adsorption, etc. to build the possible structure–performance relationships. The results revealed that amounts of organosulfonic acid groups were successfully grafted onto the SBA-15 support, and most of the surface acid sites contained in the as-prepared organic–inorganic hybrid samples were assigned as strong Brӧnsted acid sites. Notably, the functionalized SBA-15 materials exhibited promising catalytic behaviors in producing MCFA-enriched SPLs under mild conditions (40 °C, 6 h) when compared with commercial Amberlyst-15 and typical phospholipases or lipases, mostly due to their high surface area, ordered structure and adequate Brӧnsted acid sites. Besides, the as-prepared materials could be easily recycled five times without obvious deactivation. This work might shed light on alternative catalysts for SPL production instead of the costly enzymes.
Funder
the National Natural Science Foundation of China
China Postdoctoral Science Foundation Funded Project
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献