Exploring the Computational Effects of Advanced Deep Neural Networks on Logical and Activity Learning for Enhanced Thinking Skills

Author:

Li Deming1ORCID,Ortegas Kellyt D.2,White Marvin3

Affiliation:

1. School of Education, Jilin International Studies University, Changchun 130117, China

2. Merced College, Merced, CA 95348, USA

3. Department of Information Engineering, Southern University and A&M College, Baton Rouge, LA 70813, USA

Abstract

The Logical and Activity Learning for Enhanced Thinking Skills (LAL) method is an educational approach that fosters the development of critical thinking, problem-solving, and decision-making abilities in students using practical, experiential learning activities. Although LAL has demonstrated favorable effects on children’s cognitive growth, it presents various obstacles, including the requirement for tailored instruction and the complexity of tracking advancement. The present study presents a model known as the Deep Neural Networks-based Logical and Activity Learning Model (DNN-LALM) as a potential solution to tackle the challenges above. The DNN-LALM employs sophisticated machine learning methodologies to offer tailored instruction and assessment tracking, and enhanced proficiency in cognitive and task-oriented activities. The model under consideration has been assessed using a dataset comprising cognitive assessments of children. The findings indicate noteworthy enhancements in accuracy, precision, and recall. The model above attained a 93% accuracy rate in detecting logical patterns and an 87% precision rate in forecasting activity outcomes. The findings of this study indicate that the implementation of DNN-LALM can augment the efficacy of LAL in fostering cognitive growth, thereby facilitating improved monitoring of children’s advancement by educators and parents. The model under consideration can transform the approach toward LAL in educational environments, facilitating more individualized and efficacious learning opportunities for children.

Funder

Ministry of Education Industry-School Cooperative Education Project

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3